
MinIO S3 Throughput
Benchmark on
NVMe SSD (32 nodes)

DECEMBER 2019

MinIO - NVMe SSD Benchmark 02

MinIO S3 Throughput Benchmark on NVMe SSD
MinIO is a high-performance object storage server designed for AI and ML workloads.

Machine learning, big-data analytics and other AI workloads have traditionally utilized the
map-reduce model of computing where data is local to the compute jobs. Modern computing
environments have adopted a cloud-native architecture where storage and compute are
disaggregated. This enables computing to become stateless, elastic, and scalable independent
of storage. Object storage has become the de-facto standard for this architecture.

Applications access data over the network using atomic, immutable object APIs where the data
is often in a Binary Large Object (BLOB) format. The relevant performance metrics for object
storage are measured in terms of I/O throughput, rather than IOPS.

This document describes the benchmarks that MinIO engineering ran to determine the
performance of the MinIO Object Storage Server when run on NVMe. Specifically this document
shows how to setup the benchmarking environment, how to run the benchmarking tools and
reviews the performance results in detail.

Our results running on a 32 node MinIO cluster can be summarized as follows:

1. Benchmark Environment

1.1 Hardware

For the purpose of this benchmark, MinIO utilized AWS bare-metal, storage optimized instances
with local NVMe drives and 100 GbE networking.

Instance

Client

Server

Nodes

32

32

AWS Instance type

c5n.18xlarge

i3en.24xlarge

CPU

72

96

MEM

192 GB

768 GB

Network

100 Gbps

100 Gbps

Storage

EBS

8 x 7500 GB

Setup

Distributed

Avg Read Throughput (GET)

183.2 GB/s

162 GB/s

Avg Write Throughput (PUT)

171.3 GB/s

114.7 GB/s
Distributed with

 Encryption

03

1.2 Software

1.3 S3-benchmark

MinIO selected the S3-benchmark by wasabi-tech to perform our benchmark tests. This tool
conducts benchmark tests from a single client to a single endpoint. During our evaluation, this
simple tool produced consistent and reproducible results over multiple runs.

Minor changes were required in s3-benchmark, such as disabling the client-side md5 generation
that hindered the tool from saturating the 100 Gbe network.

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

c5n.18x
large

S3
benchmark

Co
mp
ut
e

St
or
ag
e

S3 API

100 Gbe Network

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

i3en.24xlarge

MinIO

Property Value

Server OS

MinIO Version

Ubuntu 18.04.2 LTS (Bionic Beaver)

Minio-RELEASE.2019-05-23T00-29-34Z

Benchmark Tool S3-benchmark https://github.com/minio/s3-benchmark

... 32

... 32

8 x NVMe8 x NVMe8 x NVMe8 x NVMe8 x NVMe8 x NVMe8 x NVMe 8 x NVMe

MinIO - NVMe SSD Benchmark

04

maximum number of open files/file descriptors
fs.file-max = 4194303

use as little swap space as possible
vm.swappiness = 1

prioritize application RAM against disk/swap cache
vm.vfs_cache_pressure = 10

minimum free memory
vm.min_free_kbytes = 1000000

maximum receive socket buffer (bytes)
net.core.rmem_max = 268435456

maximum send buffer socket buffer (bytes)
net.core.wmem_max = 268435456

default receive buffer socket size (bytes)
net.core.rmem_default = 67108864

default send buffer socket size (bytes)
net.core.wmem_default = 67108864

maximum number of packets in one poll cycle
net.core.netdev_budget = 1200

maximum ancillary buffer size per socket
net.core.optmem_max = 134217728

maximum number of incoming connections
net.core.somaxconn = 65535

maximum number of packets queued
net.core.netdev_max_backlog = 250000

maximum read buffer space
net.ipv4.tcp_rmem = 67108864 134217728 268435456

maximum write buffer space
net.ipv4.tcp_wmem = 67108864 134217728 268435456

enable low latency mode
net.ipv4.tcp_low_latency = 1

socket buffer portion used for TCP window
net.ipv4.tcp_adv_win_scale = 1

queue length of completely established sockets waiting for accept
net.ipv4.tcp_max_syn_backlog = 30000

maximum number of sockets in TIME_WAIT state
net.ipv4.tcp_max_tw_buckets = 2000000

reuse sockets in TIME_WAIT state when safe
net.ipv4.tcp_tw_reuse = 1

time to wait (seconds) for FIN packet
net.ipv4.tcp_fin_timeout = 5

disable icmp send redirects
net.ipv4.conf.all.send_redirects = 0

disable icmp accept redirect
net.ipv4.conf.all.accept_redirects = 0

drop packets with LSR or SSR
net.ipv4.conf.all.accept_source_route = 0

MTU discovery, only enable when ICMP blackhole detected
net.ipv4.tcp_mtu_probing = 1

1.4 Linux Kernel Performance Tuning

Edit the /etc/sysctl.conf �le to match the following kernel settings:

MinIO - NVMe SSD Benchmark

05

maximum number of open files/file descriptors
fs.file-max = 4194303

use as little swap space as possible
vm.swappiness = 1

prioritize application RAM against disk/swap cache
vm.vfs_cache_pressure = 10

minimum free memory
vm.min_free_kbytes = 1000000

maximum receive socket buffer (bytes)
net.core.rmem_max = 268435456

maximum send buffer socket buffer (bytes)
net.core.wmem_max = 268435456

default receive buffer socket size (bytes)
net.core.rmem_default = 67108864

default send buffer socket size (bytes)
net.core.wmem_default = 67108864

maximum number of packets in one poll cycle
net.core.netdev_budget = 1200

maximum ancillary buffer size per socket
net.core.optmem_max = 134217728

maximum number of incoming connections
net.core.somaxconn = 65535

maximum number of packets queued
net.core.netdev_max_backlog = 250000

maximum read buffer space
net.ipv4.tcp_rmem = 67108864 134217728 268435456

maximum write buffer space
net.ipv4.tcp_wmem = 67108864 134217728 268435456

enable low latency mode
net.ipv4.tcp_low_latency = 1

socket buffer portion used for TCP window
net.ipv4.tcp_adv_win_scale = 1

queue length of completely established sockets waiting for accept
net.ipv4.tcp_max_syn_backlog = 30000

maximum number of sockets in TIME_WAIT state
net.ipv4.tcp_max_tw_buckets = 2000000

reuse sockets in TIME_WAIT state when safe
net.ipv4.tcp_tw_reuse = 1

time to wait (seconds) for FIN packet
net.ipv4.tcp_fin_timeout = 5

disable icmp send redirects
net.ipv4.conf.all.send_redirects = 0

disable icmp accept redirect
net.ipv4.conf.all.accept_redirects = 0

drop packets with LSR or SSR
net.ipv4.conf.all.accept_source_route = 0

MTU discovery, only enable when ICMP blackhole detected
net.ipv4.tcp_mtu_probing = 1

Apply these parameters by calling the command sysctl -p

The MinIO binary was downloaded onto each server node, and started using the following
commands:

$ export MINIO_STORAGE_CLASS_STANDARD=EC:2
$ export MINIO_ACCESS_KEY=minio
$ export MINIO_SECRET_KEY=minio123
$ minio server http://minio-{1...32}/mnt/drive{1...8}

MinIO - NVMe SSD Benchmark

06

1.5 Client Setup

Each client was provided with a hostname matching the pattern client-{1...32}.

The DNS was configured on the client nodes such that the hostname minio on each client
resolved to a unique MinIO server. For instance, the URL http://minio:9000 on the client-1
resolved to the ip address of minio-1, and client-2 resolved to minio-2’s ip address etc.

2. Understanding Hardware Performance

2.1 Measuring Single Drive Performance

The performance of each drive was measured using the command dd. DD is a unix tool used to
perform bit-by-bit copy of data from one file to another. It provides options to control the block
size of each read and write.

Here is a sample of a single NVMe drive’s Write Performance with 16MB block-size, O_DIRECT
option for a total of 64 copies. Note that we achieve greater than 1.1 GB/sec of write perfor-
mance for each drive.

$ dd if=/dev/zero of=/mnt/drive/test bs=16M count=64 oflag=direct
64+0 records in
64+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 0.935502 s, 1.1 GB/s

MinIO - NVMe SSD Benchmark

Here is a sample of a single NVMe drive’s Read Performance with 16MB block-size, O_DIRECT
option for a total of 64 copies. Note that we achieve greater than 2.2 GB/sec of read performance
for each drive.

$ dd of=/dev/null if=/mnt/drive/test bs=16M count=64 iflag=direct
64+0 records in
64+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 0.483597 s, 2.2 GB/s

07

2.2 Measuring JBOD Performance

JBOD performance with O_DIRECT was measured using iozone. Iozone is a filesystem bench-
mark tool that generates and measures filesystem performance for read, and write among
other operations. Iozone command operating with 64 parallel threads, 4MB block-size and
O_DIRECT option.

23.98 GB/sec of read throughput and 12.939 GB/sec of write throughput on a single node was
measured. This represents the throughput combining all drives.

2.3 Network Performance

The network hardware on these nodes allows a maximum of 100 Gbit/sec. 100 Gbit/sec equates
to 12.5 Gbyte/sec (1 Gbyte = 8 Gbit).

Therefore, the maximum throughput that can be expected from each of these nodes would be
12.5 Gbyte/sec.

3. Running the 32-node Distributed MinIO benchmark

Run s3-benchmark in parallel on all clients and aggregate results:

The parameters passed into S3-benchmark are as follows:

-a access key
-s secret key
-u endpoint
-z object size
-t number of parallel workers
-b bucket name
-d duration �

$ iozone -t 64 -I -r 4M -s 256M -F /mnt/drive{1..8}/tmp{1..8}

$ parallel-ssh -O "StrictHostKeyChecking=no" --timeout=0
--hosts=hosts.clients -i ”./s3-benchmark -a minio -s minio123 -u
http://minio:9000 -z 10G -t 32 -b s3bench-`hostname` -d 1”

MinIO - NVMe SSD Benchmark

08

3.1 Results

The throughput of each of the servers backed by NVMe drives, as measured from each of the
clients using s3-benchmark is presented below:

Node # GET (GB/sec) PUT (GB/sec)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

7.3

8.7

4.5

4.5

4.6

4.5

4.9

4.8

5.2

4.4

5.2

5.2

5.2

5.2

5.3

5.3

5.7

5.7

5.6

5.1

5.8

5.9

6

6.1

6.2

6.3

6.7

6.2

6.4

6.6

7.2

7

5.1

4.6

4.9

5

4.9

4.8

4.9

4.9

4.7

4.9

4.9

4.9

4.5

4.9

4.9

4.5

5.1

4.6

7.7

4.7

7.4

4.7

4.9

7.4

7.1

7.7

4.7

4.7

5.6

5.4

5.8

6.5

Aggregate 183.2 171.3

MinIO - NVMe SSD Benchmark

09

3.3 Impact of encryption

The results of the same tests with encryption enabled are presented below:

MinIO - NVMe SSD Benchmark

3.2 Interpretation of Results

The average network bandwidth utilization during the write phase was 5.35 Gbytes/sec/node
and during the read phase was 5.725 Gbytes/sec/node. This represents client traffic to MinIO.

The network was almost entirely choked during these tests. Higher throughput can be expected
if a dedicated network was available for internode traffic.

Note that the write benchmark is slower than read because benchmark tools do not account for
write amplification (traffic from parity data generated during writes). In this case, the 100 Gbit
network is the bottleneck as MinIO gets close to hardware performance for both reads and writes.

Node # GET (GB/sec) PUT (GB/sec)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

5.1

5.1

5

4.9

5.1

5

5

5.2

5.2

5.1

5.1

5.1

5.2

5.1

5.1

5

5

5

5.2

4.9

5.1

5.1

5.1

5.1

3.6

3.6

3.6

3.7

3.7

3.5

3.7

3.6

3.6

3.5

3.5

3.5

3.5

3.6

3.6

3.5

3.6

3.6

3.5

3.6

3.4

3.5

3.5

3.6

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu

10

The impact of encryption is negligible for reads. This reduction can be accounted for by the overhead
of decrypting the objects while reading. In the case of writes, the overhead of encryption at a large
scale impacted the performance. In both the cases, the CPU was the bottleneck to performance.
However, the overall speed is still very high in comparison to the maximum available bandwidth,
therefore we strongly recommend turning on encryption for all production setups.

4. Conclusion

Based on the results above, we found that MinIO takes complete advantage of the available
hardware. Its performance is only constrained by the underlying hardware available to it. This
has been tested with the most powerful hardware available on AWS.

MinIO - NVMe SSD Benchmark

25

26

27

28

29

30

31

32

5.1

5.1

5

5.1

5

5

5

4.9

3.6

3.6

3.7

3.7

3.6

3.6

3.7

3.6

Aggregate 161.99 114.7

