
MinIO S3 Throughput
Benchmark on
Hard Disk Drives

JANUARY 2020

High Performance Object Storage 02

MinIO S3 Throughput Benchmark on Hard Disk Drives
MinIO is a high-performance object storage server designed for AI and ML workloads.

Machine learning, big-data analytics and other AI workloads have traditionally utilized the
map-reduce model of computing where data is local to the compute jobs. Modern computing
environments have adopted a cloud-native architecture where storage and compute are disag-
gregated. This enables computing to become stateless, elastic, and scalable independent of
storage. Object storage has become the de-facto standard for this architecture.

Applications access data over the network using atomic, immutable object APIs where the data
is often in a Binary Large Object (BLOB) format. The performance metrics for object storage are
measured in terms of I/O throughput, rather than IOPS.

This document describes benchmarks that MinIO engineering ran to determine the performance
of the MinIO Object Storage Server when run on hard disk drives. Specifically, this document
shows how to setup the benchmarking environment, how to run the benchmarking tools and
reviews the performance results in detail.

Our results running on 24 node Minio cluster can be summarized as follows:

1. Benchmark Environment

1.1 Hardware

For the purpose of this benchmark, MinIO utilized AWS bare-metal, storage optimized instances
with local hard disk drives and 25 GbE networking.

Instance

Client

Server

Nodes

24

24

AWS Instance type

c5d.18xlarge

h1.16xlarge

CPU

72

64

MEM

144 GB

256 GB

Network

25 Gbps

25 Gbps

Storage

2 x 900 GB

8 x 2000 GB

Setup

Distributed

Avg Read Throughput (GET)

16.3 GB/s

Avg Write Throughput (PUT)

9.4 GB/s

High Performance Object Storage 03

1.2 Software

1.3 S3-benchmark

S3-benchmark by wasabi-tech was chosen to perform benchmarking tests. This tool conducts
benchmark tests from a single client to a single endpoint. During our evaluation, this simple tool
produced consistent and reproducible results over multiple runs.

Minor changes were required in s3-benchmark, such as disabling the client-side md5 generation
that hindered the tool from saturating the 25 Gbe network.

Property Value

Server OS

MinIO Version

Ubuntu 18.04.2 LTS (Bionic Beaver)

Minio-RELEASE.2019-10-12T01-39-57Z

Benchmark Tool S3-benchmark

c5n.18x
large

Client
Node 6

c5n.18x
large

Client
Node 5

c5n.18x
large

Client
Node 4

c5n.18x
large

Client
Node 3

c5n.18x
large

Client
Node 2

c5n.18x
large

Client
Node 1

c5n.18x
large

Client
Node 7

c5n.18x
large

Client
Node 24

Co
mp
ut
e

St
or
ag
e

S3 API

25 Gbe Network

h1.16xlarge

MinIO
Node 7

h1.16xlarge

MinIO
Node 6

h1.16xlarge

MinIO
Node 5

h1.16xlarge

MinIO
Node 4

h1.16xlarge

MinIO
Node 3

h1.16xlarge

MinIO
Node 2

h1.16xlarge

MinIO
Node 1

h1.16xlarge

MinIO
Node 24

...

...

http://dl.min.io/server/minio/release/linux-amd64/archive/minio.RELEASE.2019-10-12T01-39-57Z
https://github.com/minio/s3-benchmark

High Performance Object Storage 04

maximum number of open files/file descriptors
fs.file-max = 4194303

use as little swap space as possible
vm.swappiness = 1

prioritize application RAM against disk/swap cache
vm.vfs_cache_pressure = 10

minimum free memory
vm.min_free_kbytes = 1000000

maximum receive socket buffer (bytes)
net.core.rmem_max = 268435456

maximum send buffer socket buffer (bytes)
net.core.wmem_max = 268435456

default receive buffer socket size (bytes)
net.core.rmem_default = 67108864

default send buffer socket size (bytes)
net.core.wmem_default = 67108864

maximum number of packets in one poll cycle
net.core.netdev_budget = 1200

maximum ancillary buffer size per socket
net.core.optmem_max = 134217728

maximum number of incoming connections
net.core.somaxconn = 65535

maximum number of packets queued
net.core.netdev_max_backlog = 250000

maximum read buffer space
net.ipv4.tcp_rmem = 67108864 134217728 268435456

maximum write buffer space
net.ipv4.tcp_wmem = 67108864 134217728 268435456

enable low latency mode
net.ipv4.tcp_low_latency = 1

socket buffer portion used for TCP window
net.ipv4.tcp_adv_win_scale = 1

queue length of completely established sockets waiting for accept
net.ipv4.tcp_max_syn_backlog = 30000

maximum number of sockets in TIME_WAIT state
net.ipv4.tcp_max_tw_buckets = 2000000

reuse sockets in TIME_WAIT state when safe
net.ipv4.tcp_tw_reuse = 1

time to wait (seconds) for FIN packet
net.ipv4.tcp_fin_timeout = 5

disable icmp send redirects
net.ipv4.conf.all.send_redirects = 0

disable icmp accept redirect
net.ipv4.conf.all.accept_redirects = 0

drop packets with LSR or SSR
net.ipv4.conf.all.accept_source_route = 0

MTU discovery, only enable when ICMP blackhole detected
net.ipv4.tcp_mtu_probing = 1

1.4 Linux Kernel Performance Tuning

Edit the /etc/sysctl.conf file to match the following kernel settings:

High Performance Object Storage 05

maximum number of open files/file descriptors
fs.file-max = 4194303

use as little swap space as possible
vm.swappiness = 1

prioritize application RAM against disk/swap cache
vm.vfs_cache_pressure = 10

minimum free memory
vm.min_free_kbytes = 1000000

maximum receive socket buffer (bytes)
net.core.rmem_max = 268435456

maximum send buffer socket buffer (bytes)
net.core.wmem_max = 268435456

default receive buffer socket size (bytes)
net.core.rmem_default = 67108864

default send buffer socket size (bytes)
net.core.wmem_default = 67108864

maximum number of packets in one poll cycle
net.core.netdev_budget = 1200

maximum ancillary buffer size per socket
net.core.optmem_max = 134217728

maximum number of incoming connections
net.core.somaxconn = 65535

maximum number of packets queued
net.core.netdev_max_backlog = 250000

maximum read buffer space
net.ipv4.tcp_rmem = 67108864 134217728 268435456

maximum write buffer space
net.ipv4.tcp_wmem = 67108864 134217728 268435456

enable low latency mode
net.ipv4.tcp_low_latency = 1

socket buffer portion used for TCP window
net.ipv4.tcp_adv_win_scale = 1

queue length of completely established sockets waiting for accept
net.ipv4.tcp_max_syn_backlog = 30000

maximum number of sockets in TIME_WAIT state
net.ipv4.tcp_max_tw_buckets = 2000000

reuse sockets in TIME_WAIT state when safe
net.ipv4.tcp_tw_reuse = 1

time to wait (seconds) for FIN packet
net.ipv4.tcp_fin_timeout = 5

disable icmp send redirects
net.ipv4.conf.all.send_redirects = 0

disable icmp accept redirect
net.ipv4.conf.all.accept_redirects = 0

drop packets with LSR or SSR
net.ipv4.conf.all.accept_source_route = 0

MTU discovery, only enable when ICMP blackhole detected
net.ipv4.tcp_mtu_probing = 1

Apply these parameters by calling the command sysctl -p
The MinIO binary was downloaded onto each server node, and started using the following
commands:

$ export MINIO_STORAGE_CLASS_STANDARD=EC:2
$ export MINIO_ACCESS_KEY=minio
$ export MINIO_SECRET_KEY=minio123
$ minio server http://minio-{1...24}/mnt/drive{1...8}

High Performance Object Storage 06

1.5 Client Setup

Each client was provided with a hostname matching the pattern client-{1...24}.

The DNS was configured on the client nodes such that the hostname minio on each client
resolved to a unique MinIO server. For instance, the URL http://minio:9000 on the client-1
resolved to the ip address of minio-1, and client-2 resolved to minio-2’s ip address etc.

2. Understanding Hardware Performance

2.1 Measuring Single Drive Performance

The performance of each drive was measured using the command dd. DD is a unix tool used to
perform bit-by-bit copy of data from one file to another. It provides options to control the block
size of each read and write.

Here is the output of a single HDD drive’s Write Performance with 16MB block-size using the
O_DIRECT option and a total count of 64. Note that we achieved greater than 130 MB/sec of
write performance for each drive.

Here is the output of a single HDD drive’s Read Performance with 16MB block-size using the
O_DIRECT option and a total count of 64. Note that we achieved greater than 200 MB/sec of
read performance for each drive.

$ dd if=/dev/zero of=/mnt/drive/test bs=16M count=64 oflag=direct
64+0 records in
64+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 7.83377 s, 137 MB/s

$ dd of=/dev/null if=/mnt/drive/test bs=16M count=64 iflag=direct
64+0 records in
64+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 5.23199 s, 205 MB/s

High Performance Object Storage 07

2.2 Measuring JBOD Performance

JBOD performance with O_DIRECT was measured using iozone. Iozone is a filesystem bench-
mark tool that generates and measures filesystem performance for read, and write among
other operations.

Here is the iozone command to test multi-drive performance with 32 parallel threads, 32KB
block-size and the O_DIRECT option.

Note that we achieved 1.26 GB/sec of read throughput and 655 MB/sec of write throughput for
the combination of all the drives in one server.

2.3 Measuring Network Performance

All of the servers used 25GbE networking for both client and internode communications. This
network hardware provides a maximum of 25 Gbit/sec, which equates to 3.125 GB/sec (1 Gbyte =
8 Gbit).

Even though the network can support 3.125GB/sec, the JBOD testing showed that the maximum
throughput supported by the JBOD on each server is 1.26 GB/sec. Therefore, the maximum
server throughput that can be expected from each node would be 1.26 Gbyte/sec.

3. Running the 16-node distributed MinIO benchmark

We measured the performance of the MinIO Object Server by running the s3-benchmark tool in
parallel on all 16 clients and aggregating the results. Here is the command that was used:

The parameters passed into the S3-benchmark tool are defined as follows:

-a access key
-s secret key
-u endpoint
-z object size
-t number of parallel workers
-b bucket name
-d duration

$ iozone -t 32 -I -r 32K -s 256M -F /mnt/drive{1..8}/tmp{1..4}

$ parallel-ssh -O "StrictHostKeyChecking=no" --timeout=0
--hosts=hosts.clients -i ”./s3-benchmark -a minio -s minio123
-u http://minio:9000 -z 2G -t 32 -b s3bench-`hostname` -d 1”

High Performance Object Storage 08

3.1 Results

The following table documents the throughput of the MinIO Object Storage servers as measured
from the 16 individual clients that ran the s3-benchmark tool.

Node # GET (MB/sec) PUT (MB/sec)

1

2

890.8

581.1

3 624.2

304.9

666.6

4 575.7 482.3

264.5

5

6

716.3

604.1

7 739.1

509.6

276.7

8 696.8 309.2

326.6

9

10

633.7

1008.9

11 789.2

817.5

278.2

12 632.6 287.5

263.7

13

14

557

634.9

15 552.3

295.6

308.3

16 586.1 267.4

17 824.6 435

18 687.5 279.6

19 801.8 269.7

20 780.2 257.7

21 688.6 877.8

22 646.6 263.9

23 546 505.2

24 580.1 579.8

Total 16378.2 9398.8

271.5

High Performance Object Storage 09

3.2 Interpretation of Results

The benchmark results demonstrate that MinIO is able to achieve 10.81 GB/sec read perfor-
mance and 8.57 GB/sec write performance from a 16 node MinIO Object Server.

While reviewing the test runs we determined that the performance of the MinIO Object Server
was limited by the performance of the throughput of the hard disk drives. However, the solution
was not limited by the network performance of the 25GbE network as the network was not fully
saturated.

 The bandwidth of the drives was entirely utilized during these tests. Higher throughput can be
expected if additional drives were available.

Note that the write benchmark is slower than read because benchmark tools do not account for
write amplification (traffic from parity data generated during writes). In this case, the hard disk
is the bottleneck as MinIO gets close to hardware performance for both reads and writes.

3.4 CPU and Memory Utilization

MinIO is optimized using SIMD instructions where special CPU instructions widely available on
almost all production grade CPUs were used to accelerate computational steps.

Note that the available CPU for each of the HDD machines was 64000 millicpus. The meaning
of millicpu can be found here.

Note that the available network bandwidth for each of the servers was 25 Gbps. The bandwidth
was measured using vnstat on each of the server nodes.

3.5 Network Utilization

Total 6914.5

Setup

Distributed

Avg CPU% (millicpu)

1.4% (670)

Avg Mem (GB)

11.23

Setup

Distributed

Avg Read Throughput (GET)

15.09 Gbps

Avg Write Throughput (PUT)

14.23 Gbps

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu

High Performance Object Storage 10

4. Conclusion

Based on the results above, we found that MinIO is only constrained by the underlying hardware
available to it. We tested this with the most powerful hardware available on AWS.

