
Erasure Coding
Primer

WHITE PAPER

https://www.veeam.com/wp-data-protection-trends-report.htmll

https://www.backblaze.com/blog/are-ssds-really-more-reliable-than-hard-drives/

https://www.backblaze.com/blog/backblaze-drive-stats-for-2021/

02

Erasure coding is a key data protection method for distributed storage systems. This paper
is divided into three sections. The first section explains how erasure coding aligns with
enterprise requirements for data protection. The second section describes the
implementation of erasure coding in MinIO. The third and final section focuses on the
advantages of using erasure code to protect data in cloud-native environments.

Erasure Coding Explained

Data protection is essential in any enterprise environment because hardware failure is
common. Drive failure, including SSD or HDD, is one of the most common hardware failures
to occur. Backblaze publishes hard drive failure rates on an annual basis, and in 2021 (the
most recent data) the company had 1.01% of HDD fail. In another study, the storage
provider estimated that the annualized failure rate between April 2013 and June 2021 for
SSD was 1.05% and for HDD was 6.41%. The value of data protection is underscored by
results of a survey of 3000 IT decision makers by Veeam published in 2022 that estimated
downtime costs $1,467 per minute.

In a storage system where data is stored on a large number of drives, there will be failures,
and the chances of a single drive failing increases with the number of drives in use. Storage
systems typically seek to offset this risk by redundantly storing data such that when a
number of drives fail, data can still be accessed from other disks.

Failure for enterprise and web-scale object storage takes many forms. Failure isn’t a
corrupt file or a corrupt drive or even a failed transaction - it is employees, partners and
customers getting 404 or 503 errors while multiple applications and the lines of business
they support are put at risk. The business implications of offline or corrupted storage in a
real time 24/7/365 world are tremendous, so much so that they have spawned an entire
range of data protection technologies.

Traditionally, different types of RAID technologies or mirroring/replication were used to
provide hardware fault tolerance. Mirroring and replication rely on one or more complete
redundant copies of data - this is a costly way to consume storage. More complex
technologies such as RAID5 and RAID6 provide the same fault tolerance while reducing
storage overhead. RAID is a good solution for data protection on a single node, but fails to
scale due to time consuming rebuild operations required to bring failed drives back online.

Erasure coding is the modern approach to data protection because it is resilient and
efficient. It provides data protection by splitting data files into data and parity blocks and
encoding it so that the primary data is recoverable even if part of the encoded data is not
available. As each parity fragment is written, the erasure coding algorithm calculates the
parity’s value based on the original data fragments. Horizontally scalable distributed
storage systems rely on erasure coding to provide data protection by saving encoded data
across multiple drives and nodes. If a drive or node fails or data becomes corrupted, the
original data can be reconstructed from the blocks saved on other drives and nodes.

Erasure Coding Primer

03

Figure 1. Three Way Replication

In 1960, I. Reed and G. Solomon developed the “block code” coding technique called
Reed-Solomon coding. Today, Reed-Solomon codes remain popular due to standards
compliance and efficient implementations across many hardware and software formats.
MinIO uses the Reed-Solomon algorithm for erasure coding.

Erasure coding protects data saved to distributed systems, making it possible to access
data even if part of the encoded data is unavailable. In a distributed system there are
multiple independent underlying storage systems and erasure coding is used to encode and
distribute the data across the independent storage systems (JBOD) so that the data is
recoverable in the event of hardware failure on some of the drives.

Mirroring, replication and RAID are not efficient uses of storage capacity, plus they incur
additional bandwidth due to overhead - and inefficiencies are magnified as the storage
environment grows. For example, with N-way replication, N replicas are stored on N
different drives, and the system is able to tolerate at most N-1 drive failures. Moreover,
N-way replication can only achieve a storage efficiency of 1/N (at its theoretical best case,
not accounting for operational overhead).

Many distributed systems use 3-way replication for data protection, where the original data
is written in full to 3 different drives and any one drive is able to repair or access the original
data. Not only is replication inefficient in terms of storage utilization, it is also operationally
inefficient when it recovers from failure. When a drive fails, the system will place itself in
read-only mode at reduced performance while it fully copies an intact drive onto a new drive
to replace the failed drive.

Green = The original data comes into the system and is replicated onto 3
different drives.

Red = When 1 drive fails, data is replicated onto a new drive that takes its place.

3-WAY REPLICATION

Erasure Coding Primer

https://min.io/product/erasure-code-calculator

04

Erasure coding, in contrast, is able to tolerate the same number of drive failures with much
better efficiency, by striping data across nodes and drives. There are many different erasure
coding algorithms, and Maximum Distance Separable (MDS) codes such as Reed-Solomon
achieve the greatest storage efficiency.

In object storage, the unit of data to be protected is an object. An object can be stored onto n
drives. In erasure coding, we use a number k to indicate potential failure. Therefore, k < n, and
with MDS codes the system can guarantee to tolerate n - k drive failures, meaning that k drives
are sufficient to access any object.

Considering an object that is M bytes in size, the size of each coded object is M / k (ignoring the
size of metadata). Compared to the N-way replication shown above, with erasure coding
configured for n = 5 and k = 3, a distributed storage system could tolerate the loss of 2 drives,
while improving storage efficiency by 80%. For example, for 10 PB of data replication would
require more than 30 PB of storage, whereas object storage would require 15-20 PB to securely
store and protect the same data using erasure coding. Erasure coding can be configured for
different ratios of data to parity blocks, resulting in a range of storage efficiency. MinIO
maintains a helpful erasure code calculator to help determine requirements in your
environment.

In such a system, accessing the data object requires the system to access k different coded
blocks (saved on k different drives) to read the original object using the decoding algorithm of
the MDS code that encoded the object. The data object is made up of coded data and parity
blocks. In the event of drive corruption or failure, all the system needs is a very small piece of the
data object in order to repair it.

Green = The original data comes into the system, is encoded into data and
parity blocks and written to 5 drives.

Red = When 1 drive fails, data on any other 3 drives can be decoded into the
original data.

ERASURE CODING (5,3)

Figure 2. Erasure coding stripes data and parity across drives.

Erasure Coding Primer

https://docs.min.io/minio/baremetal/concepts/erasure-coding.html#

05

Erasure coding, in contrast, is able to tolerate the same number of drive failures with much
better efficiency, by striping data across nodes and drives. There are many different erasure
coding algorithms, and Maximum Distance Separable (MDS) codes such as Reed-Solomon
achieve the greatest storage efficiency.

In object storage, the unit of data to be protected is an object. An object can be stored onto n
drives. In erasure coding, we use a number k to indicate potential failure. Therefore, k < n, and
with MDS codes the system can guarantee to tolerate n - k drive failures, meaning that k drives
are sufficient to access any object.

Considering an object that is M bytes in size, the size of each coded object is M / k (ignoring the
size of metadata). Compared to the N-way replication shown above, with erasure coding
configured for n = 5 and k = 3, a distributed storage system could tolerate the loss of 2 drives,
while improving storage efficiency by 80%. For example, for 10 PB of data replication would
require more than 30 PB of storage, whereas object storage would require 15-20 PB to securely
store and protect the same data using erasure coding. Erasure coding can be configured for
different ratios of data to parity blocks, resulting in a range of storage efficiency. MinIO
maintains a helpful erasure code calculator to help determine requirements in your
environment.

In such a system, accessing the data object requires the system to access k different coded
blocks (saved on k different drives) to read the original object using the decoding algorithm of
the MDS code that encoded the object. The data object is made up of coded data and parity
blocks. In the event of drive corruption or failure, all the system needs is a very small piece of the
data object in order to repair it.

In the past decade, the design objectives of erasure codes for cloud storage have matured from
a focus on data integrity to a focus on resource overhead. Erasure coding algorithms are
typically evaluated based on multiple repair-related factors such as the amount of bandwidth
required for a repair, the amount of I/O required for repair, access latency of erasure coded data
compared to access latency of the original data, and storage efficiency - with the last being of
critical importance when designing web-scale distributed object storage systems.

Overview of MinIO Erasure Coding

MinIO protects data with per-object, inline erasure coding (official MinIO documentation for
reference) which is written in assembly code to deliver the highest performance possible. MinIO
makes use of Intel AVX512 instructions to fully leverage host CPU resources across multiple
nodes for fast erasure coding. A standard CPU, fast NVMe drives and a 100 Gbps network
support writing erasure coded objects at near wire speed.

MinIO uses Reed-Solomon code to stripe objects into data and parity blocks that can be
configured to any desired redundancy level. This means that in a 16 drive setup with 8 parity
configuration, an object is striped across as 8 data and 8 parity blocks. Even if you lose as many
as 7 ((n/2)–1) drives, be it parity or data, you can still reconstruct the data reliably from the
remaining drives. MinIO’s implementation ensures that objects can be read or new objects
written even if multiple devices are lost or unavailable.

SERVER 32SERVER 3SERVER 2SERVER 1

Object 1 Object 2

100 GBe Switch

S3 API

P P

P P

Figure 3. Erasure code protects data without the overhead associated with alternative approaches.

Erasure Coding Primer

https://docs.min.io/docs/minio-bucket-versioning-guide.html

06

MinIO uses a Reed-Solomon algorithm to split objects into data and parity blocks based on
the size of the erasure set, then randomly and uniformly distributes the data and parity
blocks across the drives in a set such that each drive contains no more than one block per
object. While a drive may contain both data and parity blocks for multiple objects, a single
object has no more than one block per drive, as long as there is a sufficient number of drives
in the system. For versioned objects, MinIO selects the same drives for data and parity
storage while maintaining zero overlap on any one drive.

We use the EC:N notation to refer to the number of parity blocks (N) in an erasure set. The
number of parity blocks controls the degree of data redundancy. Higher levels of parity
allow for greater fault tolerance at the cost of total available storage. The default for 16
drives is EC:4 which results in 12 data blocks and 4 parity blocks per object. We chose the
default stripe size to balance protection and performance.

The back end layout of MinIO is actually quite simple. Every object that comes in is assigned
an erasure set. An erasure set is basically a set of drives, and a cluster consists of one or
more erasure sets, determined by the amount of total disks.

Let’s take a look at a simple example to understand the format and the layout used in
MinIO.

It’s important to note that the format is about the ratio of the data drives to parity drives -
whether we have four nodes with a single drive each or four nodes with 100 drives each
(MinIO is frequently deployed in dense JBOD configurations).

We can configure our four nodes with 100 drives each to use an erasure set size of 16, the
default. MinIO will group drives into groups of 16 and make them one erasure set. This is the
logical layout, and it is part of the definitions of the erasure coding calculations. Every 16
drives is one erasure set made up of 8 data and 8 parity drives. In this case, the erasure set

Total Drives (n) Data Drives (d) Parity Drives (p) Storage Usage Ratio

16

16

16

16

16

16

16

8

9

10

11

12

13

14

8

7

6

5

4

3

2

2.00

1.79

1.60

1.45

1.34

1.23

1.14

Erasure Coding Primer

Figure 4. MinIO Erasure Coding: Configurable Data and Parity Options and Their Storage Usage Ratios

07

is based on 400 physical drives, divided equally into data and parity drives, and can tolerate
the loss of up to 175 drives. When an object and its parity are written, they are written
across the 16 drives by the erasure code algorithm. The erasure code algorithm that was
used for each object is recorded along with the content itself to simplify decoding on read.

Once a set of nodes is given an erasure coding configuration, everything written to MinIO
adheres to the same configuration. There’s no protocol layering and translation to increase
complexity and add processing time. To drive the point home, if there were a fire in the data
center, an administrator could pull all the drives out, carefully mount them in other servers
and read the data. The data is all encrypted and can’t be read without the keys or tampered
with. MinIO’s design is simple, secure and powerful. From a supportability operations point
of view, admins will always be able to make sense of which data is held on which drive.

MinIO’s XL metadata, written atomically with the object, contains all the information
related to that object. There is no other metadata within MinIO. The implications are
dramatic - everything is self-contained with the object, keeping it all simple and
self-describing. XL metadata indicates the erasure code algorithm, for example two data
with two parity, the block size, the checksum. Having the checksum written along with the
data itself allows MinIO to be memory optimized while supporting streaming data,
providing a clear advantage over systems that hold streaming data in memory, then write it
to disk and finally generate a CRC-32 checksum.

OBJECT ERASURE-CODED OVER 16 DRIVES

1 1P 2P 3P 8P
CHECKSUM CHECKSUM CHECKSUM CHECKSUM

PARITY BLOCKDATA BLOCK

21 3 8
CHECKSUM CHECKSUM CHECKSUM CHECKSUM

Figure 5. Using MinIO default erasure coding configuration provides the ability to tolerate the loss of up to half of the drives
without downtime or data loss.

Erasure Coding Primer

08

When a large object, ie. greater than 10 MB, is written to MinIO, the S3 API breaks it into a
multipart upload. Part sizes are determined by the client when it uploads. S3 requires each
part to be at least 5 MB (except the last part) and no more than 5 GB. An object can have
up to 10,000 parts based on the S3 specification. Imagine an object that is 320 MB. If this
object is broken into 64 parts, MinIO will write the parts to the drives as part.1, part.2,...up
to part.64. The parts are of roughly equal size, for example, the 320 MB object uploaded as
multipart would be split into 64 5 MB parts.

Each part that was uploaded is erasure coded across the stripe. Part.1 is the first part of

Disk1

MyBucket

MyObject

Disk2

MyBucket

MyObject

Disk3

MyBucket

MyObject

Disk4

MyBucket

MyObject

{
 “version”: “1.0.1”,
 “format”: “xl”,
 “stat”: {
 “size”: 2286,
 “modTime”: “2017-12-02T00:24:20.975968336Z”,
},
 “erasure”: {
 “algorithm”: “klauspost/reedsolomon/vandermonde”,
 “data”: 2,
 “parity”: 2,
 “blockSize”: 10485760,
 “index”: 2,
 “distribution”: “[
 2,
 3,
 4,
 1
],
 “checksum”: [
 {
 “name”: “part.1”,
 “algorithm”: “blake2b”,
 “hash”: “c24fa0451fd85a3a482c...b672b7f”
 }
]
 },
 “minio”: {
 “release”: “DEVELOPMENT.GOGET”
 },
 “meta”: {
 “content-type”: “application/octet-stream”,
 “etag”: “c1d217c52d44c9eab00e81496b2b91b6”
 },
 “parts”: [
 {
 “number”: 1,
 “name”: “part.1”,
 “etag”: “”,
 “size”: 2286
 }
]
}

ERASURE CODE INTERNALS

xl.json
part.1

xl.json
part.1

xl.json
part.1

xl.json
part.1

export-x1/

Figure 6. Erasure coded objects are striped across drives as parity and data blocks with self-describing XL metadata.

Erasure Coding Primer

09

the object that was uploaded and all of the parts are horizontally striped across the drives.
Each part is made up of its data blocks, parity blocks and XL metadata. MinIO rotates
writes so the system won’t always write data to the same drives and parity to the same
drives. Every single object is independently rotated, allowing uniform and efficient use of all
drives in the cluster, while also increasing data protection.

For example, in a MinIO cluster running 32 nodes, each with 32 drives, there are 1024 drives.
When each object is placed, that object is hashed based on bucket and object names, This
hash deterministically places the object in an erasure set. The erasure set is static over a
server pool, therefore a hash mode operation will always land in the same erasure set.

MinIO treats all nodes in a cluster the same and all nodes share the same functionality.
Combined with metadata being written with the object, the result is that when nodes
and/or drives fail, they are simply taken out of service to be replaced when new hardware is
available. As a result, MinIO is operationally efficient at scale.

To retrieve an object, MinIO performs a hash calculation to determine where the object was
saved, reads the hash and accesses the required erasure set and drives. When the object is
read, there are data and parity blocks as described in XL metadata. The default erasure set
in MinIO is 12 data and 4 parity, meaning that as long as MinIO can read any 12 drives the
object can be served.

In the case of the multipart upload with 64 parts discussed above, the parts will be returned
in order from different MinIO nodes - and always be consistent. Every node contains the
same logic, the parts are written with their metadata on commit.

BitRot Protection

Silent data corruption or BitRot is a serious problem for drives resulting in the corruption of
data without the user’s knowledge. As the drives get larger and larger and the data needs
to persist for many years, this problem is more common than we imagine. The data bits
decay when the magnetic orientation flips and loses polarity. Even solid state drives are
prone to this decay when the electrons leak due to insulation defects. There are also other
reasons such as wear and tear, voltage spikes, firmware bugs and even cosmic rays.

MinIO’s SIMD accelerated implementation of the HighwayHash algorithm ensures that it
will never return corrupted data - it captures and heals corrupted objects on the fly.
Integrity is ensured from end to end by computing hash on WRITE and verifying it on every
READ from the application, across the network and to the memory/drive. The
implementation is designed for speed and can achieve hashing speeds over 10 GB/sec per
core on Intel CPUs.

MinIO was designed to provide strong data protection using erasure coding and
HighwayHash for checksum - and do this at memory speed. There is no performance cost to
validating checksums, so MinIO always validates checksums on read to prevent corruption

Erasure Coding Primer

https://docs.min.io/minio/baremetal/concepts/erasure-coding.html#bitrot-protection

https://docs.min.io/minio/baremetal/concepts/erasure-coding.html#minio-ec-erasure-set

https://docs.min.io/minio/baremetal/concepts/erasure-coding.html#bitrot-protection

10

such as BitRot. Even when an application repeatedly requests the same data, MinIO never
blindly trusts drives and always reads and verifies the checksum. This ensures that whatever
was written is guaranteed to be exactly the same every single time it is read.

Benefits of Erasure Coding

Erasure coding is better suited for object storage than RAID because objects are immutable
blobs that get written once and read many times. Like RAID 5 (parity 1) and RAID 6 (parity
2), MinIO relies on erasure coding (configurable parity between 2 and 8) to protect data
from loss and corruption. Erasure coding breaks objects into data and parity blocks, where
parity blocks support reconstruction of missing or corrupted data blocks. MinIO distributes
both data and parity blocks across nodes and drives in an erasure set. With MinIO’s highest
level of protection (8 parity or EC:8), you may lose up to half of the total drives and still
recover data. MinIO combines multiple erasure sets into a single namespace in order to
increase capacity and maintain isolation.

Not only does MinIO erasure coding protect objects against data loss in the event that
multiple drives and nodes fail, MinIO also protects and heals at the object level. The ability
to heal one object at a time is a dramatic advantage over systems such as RAID that heal
at the volume level. A corrupt object could be restored in MinIO in seconds vs. hours in RAID.
If a drive goes bad and is replaced, MinIO recognizes the new drive, adds it to the erasure
set, and then verifies objects across all drives. More importantly, reads and writes don’t
affect one another, enabling performance at scale. There are MinIO deployments out there
with hundreds of billions of objects across petabytes of storage.

MinIO protects against BitRot, or silent data corruption, which can have many different
causes such as power current spikes, bugs in disk firmware and even simply aging drives.
MinIO uses the HighwayHash algorithm to compute a hash on read and verify it on write
from the application, across the network and to the storage media. This process is highly
efficient - it can achieve hashing speeds over 10 GB/sec on a single core on Intel CPUs - and
has minimal impact on normal read/write operations across the erasure set.

The erasure code implementation in MinIO results in improved operational efficiency in the
datacenter. Unlike RAID and replication, there is no lengthy rebuilding or re-synchronizing
data across drives and nodes. It may sound trivial, but moving/copying objects can be very
expensive, and a 16TB drive failing and being copied across the datacenter network to
another drive places a huge tax on the storage system and network.

Erasure Coding Primer

About MinIO

Additional Information
Email: hello@min.io
MinIO Inc.
530B University Avenue,
Palo Alto, CA 94301

Resources
https://min.io
https://docs.min.io/
https://blog.min.io/

© 2022 MinIO, Inc.

MinIO is pioneering high performance, Kubernetes-native object storage for the multi-cloud. The
software-defined, Amazon S3-compatible object storage system is used by more than half of the
Fortune 500. With 781M+ Docker pulls, MinIO is the fastest-growing cloud object storage company
and is consistently ranked by industry analysts as a leader in object storage. Founded in 2014, the
company is backed by Intel Capital, Softbank Vision Fund 2, Dell Technologies Capital, Nexus Venture
Partners, General Catalyst and key angel investors.

11Erasure Coding Primer

